If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-x=1900
We move all terms to the left:
x^2-x-(1900)=0
We add all the numbers together, and all the variables
x^2-1x-1900=0
a = 1; b = -1; c = -1900;
Δ = b2-4ac
Δ = -12-4·1·(-1900)
Δ = 7601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{7601}}{2*1}=\frac{1-\sqrt{7601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{7601}}{2*1}=\frac{1+\sqrt{7601}}{2} $
| 2+x/4=15 | | 90°+2x+7+6x+3=180° | | d4=1 | | -4(q+8)=-24 | | 60x-6x^2=0 | | 39=-8v–17 | | 14=-v2+15 | | 5=2z–17 | | 7=c-1 | | 2(x+20)+2x=640 | | -118.82a+a(-5a+3.4)^5=45.7 | | x^2+2x=293 | | 13=5y+3= | | 7x+5=x+25 | | 0,5x=1-0,25 | | a(3.4-5a)^5=118.82a+45.7 | | 2/4=5x/10-2x | | (3.4-5a)^5=118a+45 | | (2x-142)+(x+16)=180 | | 3/x+2=0,5 | | (2x+50)(2x+34)=2240 | | x^2+42x-160=0 | | 2x+5=5x=1 | | (4x)4=12 | | 36=(x+9) | | -13=7h+1=-32 | | 6f−4=2 | | 3x+2÷7+x-5÷2=9 | | x7=12 | | 5(4a+2)-3(5a-3)=7(2a-7)-5(7a-6)+9a | | 3b+8=56 | | x2+45=0 |